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A MODEL IN WHICH COMPONENT FAILURE RATES DEPEND ON THE WORKING SET
by

Sheldon M. Ross

1. INTRODUCTION

Consider an n component systeém having some arbitrary monotone coherent
structure (see Barlow and Proschan [1] for suitable definitions). We sup-
pose that each component is initially on and stays on for a random time at
which it fails. The problem of interest is to characterize the distribution
of the time until the system fails. Whereas this problem is usually con-
sidered under the assumption that the componment lives are independent, we
are concerned with the following model which allows for dependencies in
these life distributions: We suppose a Markovian model in which the failure
rate of a given component at any time 18 allowed to depend on the set of
working components at that time. Specifically,we suppose that if at some
time W, WC {1,2, ..., n} , represents the set of working components then
for 1 ¢ W the instantaneous failure rate for component 1 is Ai(ﬂ) .

We start by giving a sufficient condition for the distribution of system
1ife to be NBU where we say that the nonnegative random variable T has a

NBU (new better than used) distribution if
P{T>8s+t | T>s8} <P{T >t} forall s,t>0.

In words, the above states that the probability a used item survives an
additional t time units is less than the corresponding probability of a
new item. We are now ready to show that if the failure rate of a component
increases as the set of working components decrease then system life is

NBU.
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Proposition 1:

If for all sets W, CW

1 2’

A ) 20 M), LeW ,

then the time until system failure is NBU.

Proof:

For any set of compoments W, let 'rw denote the time until the
system fails when W consists of the set of components that are initially

working. We will start by showing that if Z CW then T The

< T. .
zstw

proof of this will be by induction on k = |Z| + |W| , where |U| equals
the number of elements in U . It is obvious for k =1 (for in this
case 2 .- ¢ and so Tz = 0), and so assume it whenever |[Z| + |W| = k .
Now suppose that Z CW and |Z| + |W =k + 1. For i€ Z,define
X1 to be an exponential random variable with rate A\ 1(Z) . Also for
JeW~2 define Y

to be exponential with rate A, (W) . In addition,

3 ]

suppose that all the Xi and Y 3 80 defined are independent. Now let

X=mnin {min X, , min Y{ .
ez JeW-2

There are two cases we need consider:

Case 1: X=X for 1¢ 2

i

In this case,vwe can set
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*x

Tz = X+ Tz gy
* )1(w)
X+ T{W—i} with probability )‘iT)
T.. =
W
. A D)
X+ TW with probability 1 - W

where T; is meant to be a random variable independent of all the xi

and Y, and with the same distribution of T; . Since {z-1}c{w-1}C

W , it follows by the induction hypothesis that in this case Tz < TW .
st

Case 2: X =Y forsome jecW-2

i

In this case,we set

*
'rz-x+'rz

*
Ty =X+ Ty -

As Z C {W ~ 3}, it again follows by the induction hypothesis that

'rzi'rw.

st

Hence, for Z CW , 'rz < Tw . Now suppose all components are initially
st

on and that the system is still working at time s . Now no matter what the

set of working components is at time s , it follows from the above that the

remaining life is stochastically smaller that '1‘{ 1.2 a} vhich proves
pbgecey

the proposition. ||
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Reparks:

(1) Proposition 1 need not be true without the monotonicity assumption
on Ai(W) . For a counterexample, consider a parallel system with

n=2 and

A1(1,2) - A2(1,2) =]
Al(l) =-c , Az(l) =1 .

Suppose the system is working at t . Now as t becomes larger at
some point the system's failure rate starts to decrease because it
becomes more and more likely that only component 1 is working (the
only other possibility of any probability being that only 2 is

working). Hence, system life will not be NBU,

(i1) As the failure rate of a working component depends on the set of
failed components, the question arises as to whether Proposition 1
would remain true if this failure rate were allowed to depend on
the order in which the components have failed. That is, suppose
that X, (1;,1,, coo L) , 1 8 iy»3 =1 ..., k, is the failure
rate of component 1 when components 11, essy ik have failed and
in that order. Would system life be NBU if Xi(il, cees L) <
Xi(il, eees 451 1) 7 The answer is no for consider the following

example for a parallel system:

6

n=3 , Xl -3, =100 , X, =1

2 3

X3(1.2) =10 , i3(2.1) -]




(114)

(iv)

where Xi is the initial failure rate of component i . WNow after
a short time both 1 and 2 would be failed and so the remaining life
will be a mixture of an exponential with rate 10 (if 1 failed before
2) or an exponential with rate 1 (if 2 failed before 1). But a
mixture of exponentials with unequal rates has a decreasing failure

rate and so system life could not be NBU.

When n = 2 , the joint distribution of the lifetimes of the two
components is called the Freund Distribution (see {2]). It can be
shown in this case (see [6]) that the time of system failure has the
stronger than NBU property of being an increasing failure rate on
average (IFRA) distribution. We do not know if this result can be

extended to the case n > 2 .
An interesting special case obtains when we take

ay
A ) = AC , 1ew

a
jew 3

where a, are given nonnegative numbers. Such a situation would
arise from the following weighted load sharing model: Suppose that
an n component system is subject to a constant load pressure C
which must be allocated among the working compomnents. Suppose also
that the allocation is determined by a set of weights a5, 005 8
such that if at any time W i1s the set of working components then

the load taken on by component i , i ¢ W, 1s Ca,/ ] 1f

a L]
JeW i
in addition we suppose that the failure rate of component i 1is

proportional to (with proportionality constant Ai) the load, it is




6
!
assuming then the above obtains. For this model, it can be shovn

(see [S]) that for a parallel system the time until system failure
w v (that is the time until all components have failed) is an increasing p'
‘ : failure rate (IFR) random variable.

]
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2. LAPLACE TRANSFORM OF SYSTEM LIFE

For a given structure one can, upon conditioning on the order in which
the components fail, obtain an expression for the Laplace transform of T ,
the time of system failure. For instance, suppose a parallel system which

fails when all components fail, Then letting

ii(w) - xi(wc) , Where W - complement of W

we have

R )
x (i 9 esey i
n | S | k-1
BeMe Ry, ety @A
(11,...,1n)€_P_ k-l s + 2 Xi (11, s s ey 1k_l)

3=k 7}

where

P 1is the set of all n! permutations of 1,2, ..., n

and
X X, (1)) X, gy coey 1. _4)
P4, ,1 1) = ! il e ! b v 1
M s Ty Ina )
X 1 R
gh My g Myt she La

is the probability that components fail in that order.

The above can easily be understood by noting that given that the
components fail in order 11,12, ooy 1n the time between successive
failure components are independent expomnentials with rates

n

n -
321 Aij’jZZ 111(11). coss Ain(il, cees 4 g)



3. SIMULATING THE PROCESS

Let Ti denote the failure time of component i . The random vector

(Tl, cesy Tn) can most easily be simulated as follows: Let Xi s

i=1, ..., n be independent exponentials with respective rates Xi ’

i=1, ..., n . Now order the Xi and let i 12, cees i be such that

X < X < 440 <X .

L, L
Now set
T, =X
L 4
n -
_1.22_)21__
Ti'x1+(x1'x1)n ‘
2 1 2 1 -
I X ap
=2 74
n -
jik ML
T, =T + ( ) = s k=2, ..., n,
ik Lk-l 1k ik- z )\ (i, cees kl)

3=k 1

The above follows by first noting tkat given 11, veny in s 1t follows from

the lack of memory property of the exponential that

n

b R ) j'iz R LA ;ik L

are independent exponentials with rates 1. The denominator term

—— A . [




n

Z AL, seey L .) 1n the definition of T thus gives the exponential
Rt i k-1

i

3 k

its appropriate rate.

Remark:

When n =2 and Xi g_xi(j) » 3 #1 , the above expresses Tl,'r2 as an
increasing homogeneous function of xl,xz + This was noted and used in [6]
to show that the Ti are associated (follows from the fact they are in-
creasing functions of the independent random variables X, (see [1] for a
proof of this)) and also that system life is IFRA (follows from the fact that
the function is not only increasing but also homogeneous--see [%] for a proof
of this). Unfortunately, when n > 2 , these functions are no longer in-

creasing.
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4. THE MODEL WITH REPAIR

Let us suppose that failed components are repaired. Specifically,
suppose that the repair rate of component i when then set of working
components is W , 1 ¢ W, is ui(w) . This gives rise to a continuous
time Markov chain with 2" states--all possible subsets wc{1,2, ..., n} .
To solve for the steady state probabilities is in general a difficult task

but it simplifies in the following special case:

Special case:

For functions £(k) , g(k) , k = 0,1, ..., n and positive constants

A s W k=1, ooy m,
Aj(W) = Ajf(lwl) s JeW
w W = wg(W) , 1ew.

Proposition 2:

Under the conditions of the above special case, the stationary prob-
abilities of the set of working components is given as follows: For

W = {11’ seey i.k} »

W, My eee M
1,1, L ak-1) ...

a2t 2  kg(k-1) ... g(0)
P({17, «ces 4,1 W VI TR ... £(D)  E#)

1 12 L

wvhere P(¢) 1s the stationary probability that all components are failed
and can be obtained by summing the above over all W and equating to 1.

In addition the chain, in steady state, is time reversible.

PP PRI
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Proof:

To verify the above, all we need check is that the proposed stationary
probabilities satisfy the time reversibility equations. That is we need

check that, for the proposed stationary probabilities,

P({il. ceay ik})kilf(k) = P({iz, cesy ik})uilg(k -1) .

But this is immediate and so the result follows. ||
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